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Abstract

Two new correspondence principles, which are called elasticity recovery correspondence principles, for problems
involving a class of nonlinear (or linear) viscoelastic materials in one-dimensional case are proposed in this paper. By
means of these principles, solutions to nonlinear viscoelastic problems can be obtained as long as the solutions to the
corresponding nonlinear elastic problems exist. The idea of these principles is entirely different from the traditional one.
Not the similarity between the elastic constitutive relation and the viscoelastic relation is utilized. Rather, the recover-
ability from the nonlinear viscoelastic response to the nonlinear instantaneous elastic response is utilized. It is shown by
experiments for modified polypropylene that these principles are applicable for such a class of materials. © 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

In linear viscoelasticity, the solutions of viscoelastic problems have been greatly simplified by using the
correspondence principle (see e.g. Christensen, 1982; Zhang, 1994). Attempts have been made in finding the
correspondence principles for solving nonlinear viscoelastic problems by some authors, such as Schapery
(1982, 1984), Hu and Tong (1991), etc. Simplified nonlinear viscoelastic constitutive relations were given by
Rabotnov (1980) and a theory of elastic—plastic heredity was discussed based on the concept of the modified
stress. When the strain ¢(¢) is prescribed, Schapery (1982) defined a pseudostrain ¢°, which is related to the
current strain ¢ by taking a hereditary integral. He expected that the relation between the stress ¢ and the
pseudostrain ¢° could behave like that of a nonlinear elastic material. However, in his example (Schapery,
1982) for a nonlinear viscoelastic material subjected to ten equal-amplitude cyclic strain, he also found
himself that the pseudostrain and stress could not return to the origin simultaneously and the loading
curves and the unloading curves could not coincide completely with each other. Hu and Tong adopted the
nonlinear viscoelastic constitutive equations in the form of n-multiple integral:
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Using the n-multiple Laplace transformation, they proposed a correspondence principle for nonlinear
viscoelastic materials. Since too much material kernel functions and parameters are included in the con-
stitutive relations, it is not convenient for practical application. The considerable difficulties involved in
finding solutions of nonlinear viscoelastic problems in the general cases compel us to use the simplified
nonlinear viscoelastic constitutive relations and to focus our attention in physical nonlinearity. In this
paper, attempt is made in finding corresponding principles in the range of infinitesimal deformation based
on the simplified nonlinear viscoelastic constitutive relations and only the one-dimensional case will be
discussed. The idea in finding the correspondence principles is entirely different from that in linear visco-
elastic theory. Not the similarity between the nonlinear viscoelastic constitutive relation and the nonlinear
elastic constitutive relation is utilized. Rather, the recoverability of the nonlinear current viscoelastic re-
sponse to the instantaneous elastic response is utilized.

The paper is organized as follows: Section 2 discusses the correspondence between the nonlinear
viscoelastic and nonlinear elastic constitutive relations. Section 3 is devoted to the nonlinear elastic—
viscoelastic correspondence principles, which we shall call the elasticity recovery correspondence principles.
A comparison between theory and experiments is given in Section 4. Section 5 closes the paper with some
concluding remarks.

2. Correspondence between the nonlinear viscoelastic and nonlinear elastic constitutive relations
2.1. Relations between the current stress (or strain) and the recovered elastic stress (or strain)

Let 7 be the time, x, a(x, ), &(x, ¢) and u(x, ) be the position, the current stress, the current strain and the
current displacement in one-dimensional case, respectively. Assume that the viscoelastic material possesses
instantaneous elastic response. Let ¢°(x, ), ¢°(x,7) and u®(x,#) be the instantaneous elastic stress, the in-
stantaneous elastic strain and the instantaneous elastic displacement, respectively. A material possessing
elastic property is defined as: the material obeys the first and the second laws of thermodynamics, and the
loading process is reversible. This definition requires that the loading curves and the unloading curves must
fall in the same curve, and the stress and the strain must return to the origin simultaneously. It follows that
(see e.g. Fung, 1965) there exists a strain energy function W = W(¢®, x,t) with the property that

0° = 0W J0e (1)
and a complementary strain energy function W, = —W + ¢°¢° = W.(0°, x,t) with the property that
e UAGI (2)

Egs. (1) and (2) define the nonlinear elastic constitutive relations. To obtain the correspondence prin-
ciples, let us at first search the relations between the current stress ¢ (or strain &) and the instantaneous
elastic stress ¢° (or strain ¢°). Generally, such relations are very complicated. It is necessary to simplify the
nonlinear viscoelastic constitutive relations. The Volterra—Fréchet relation in the one-dimensional case is
written as

8(!):/;D](1—rl)d6(rl)+/; /;Dz(t—’EI,t—’Ez)do‘(‘El)do‘(‘Ez)—|—-~ 3)

or its inverse relation
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To fit the experimental data satisfactorily, more than three kernels D; or E; are needed, and the calculation
of the kernels E; from D;, or conversely, involves great difficulties. Therefore, Eqgs. (3) and (4) are not
convenient for practical application. Following Rabotnov (1980), we suppose that the kernel D; is the
product of like functions of i different arguments

Di(t_flvt_TZa"';t_Ti):aiHDra(t_Tk)ﬂ (5)
k=1

where nondimensional quantity D' (¢) = D,(t)/D, is referred to as the relative creep compliance. The
subscript “o”” of D! in the g-relation (6) is used to distinguish D! in the e-relation (20b). D,(¢) is referred to
as the creep compliance and D, = D,(0) is the instantaneous elastic compliance. Substituting Eq. (5) into
Eq. (3) and defining ¢°(¢) as the following Stieltjes convolution

t
o°(t) =D, +do = / D.(t—t)da(1), (6)
we can rewrite Eq. (3) as
6(t) = a1o*(1) + axlo* (O] + aslo* (O] + . ()
Series (7) defines ¢(¢) as a function of ¢°(¢). The inversion of this function is
o*(1) = ole(®)], (8)

where ¢(¢) is understood as an prescribed input quantity, so that the known strain itself is the instantaneous
elastic strain, i.e. (¢) = &°(¢). This corresponds that E(¢) = H(¢) in Eq. (11) (see Eq. (17)), where H () is the
Heaviside unit-step function. Eq. (8) defines an instantaneous elastic stress ¢¢ as a single-valued continuous
function of ¢, which defines the instantaneous elastic stress—strain relation. If the stress ¢°(¢) is calculated
from the current stress o(¢) by the hereditary integral (6), then it will be referred to as the recovered elastic
stress. The relation between the recovered elastic stress and the strain is called the recovered elastic stress—
strain relation, which would be the same as the instantaneous elastic stress—strain relation (8) as long as the
assumption (5) is strictly valid. From Egs. (6) and (8), we have

() = o] = [ D= 7)do(o) o)

Eq. (9) gives the relation between the current stress o(¢) and the prescribed strain &(¢).
Similarly, suppose that

E(t—t,t—1,...,t — 1) = b [Ei(t — ), (10)
k=1

where nondimensional quantity E.(z) = E.(¢)/E, is referred to as the relative relaxation modulus. The
subscript “¢”” of E! in the ¢-relation (11) is used to distinguish E! in the o-relation (19b). E,(¢) is referred to
as the relaxation modulus and E, = E,(0) is the instantaneous elastic modulus. Defining

se(t):E;*dS:/ ‘Ez(tf‘c)ds(r), (11)

—00

t

and following the same procedure as above, we obtain

() = yla (1), (12)
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where o(¢) is understood as an prescribed input quantity, so that the known stress itself is the instantaneous
stress, i.e. a(¢) = ¢°(¢). This corresponds that D! () = H(¢) in Eq. (6). Eq. (12), which is the inversion of Eq.
(8), also defines the instantaneous elastic stress—strain relation. If one calculates the recovered elastic strain
¢°(¢) from the current strain ¢(z) by the hereditary integral (11), then the relation between the recovered
elastic strain and the stress is also called the recovered instantaneous elastic relation. From Eqgs. (11) and
(12), we have

t
) = plot) = [ Bl 7)deto), (13)
Eq. (13) gives the relation between the current strain &(¢) and the prescribed stress o(¢). Thus, if the current
stress response o(¢) (or the current strain response &(¢) is known, from Eq. (6) (or (11)) we can find the
recovered elastic stress o°(¢) (or recovered elastic strain &°(¢)).

Following the treatment of Gurtin and Sternberg (1962), we employ the notation of Stieltjes convolu-
tion, and assume that o(¢) = ¢(¢) = 0 for ¢ < 0. Because of the axiom of nonretroactivity, D,(¢) = D,(t) =
E,(t) = E.(t) =0 for ¢t < 0. Generally, let ¢(z) and ¥/(¢) be continuous functions for 0<z < oo, ¢(t) =
V() =0 for ¢ < 0, the values of the functions at + = 0 may have a jump, ¢(¢) = @(07), ¥(£) = ¥ (0") at
t = 0%, then the Stieltjes convolution of this two functions can be defined as

t t
ordp= [ o= = w000+ [ ol- 1) (14)
where the first term is the instantaneous one, which reflects the contribution of the jumped value (0*) at
the instant ¢t = 07. The second term is the hereditary one, which reflects the sum of contributions of the
values of (z) at instant 7, 0 < t < ¢, to the value of ¢ x dy at time ¢. The following properties of com-
mutivity, associativity of the Stieltjes convolution of ¢ with i and w (also defined over 0 < ¢ < oo) and the
Stieltjes convolution of a function with the Heaviside unite step function H(¢) will be used later:

@ xdjp = Y+ do; (15)
o xd(Y xdw) = (@ xdy) *dw = ¢ * dy * dw; (16)
o*xdH = H xdo = ¢. (17)

We now solve the Volterra integral equation of the second kind (6) (or (11)) for o(¢) (or &(¢)): Taking the
Stieltjes convolution of E% or D! with the functions on both sides of Eq. (6) or Eq. (11), using the properties
of Egs. (15)—(17) and requiring that

E «dD. =D «dE, = H(t), E,*dD,=D;«dE, =H(t), (18)
we may obtain the inverse equations of Egs. (6) and (11). All the results are summarized as follows:
0°(t) =D, *do = g xdD., (19a)
o(t) = E; xdc® = ¢° xdE., (19b)
() =E, xde = e x dE}, (20a)
&(t) = D, * de® = &« dD\. (20b)

The instantaneous elastic compliance and the instantaneous elastic modulus have the relation: E, = 1/D,
(or E, = 1/D,). Relations (19a), (19b) and (20a), (20b) are the corresponding relations between the current
stress (or strain) and the recovered elastic stress (or strain).
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It should be emphasized that in order to describe the o-relation and the ¢-relation uniformly by Egs.
(19a), (19b) and (20a), (20b), we have used different notations D’ (¢) and D!(¢) for the relative creep com-
pliance, they are not necessarily the same quantities. Similarly, E! () and E%(¢) are not necessarily the same
quantity as well. This is due to the approximation of the single integral constitutive equation on the one
hand. On the other hand, it is mainly due to the following reason. In the o—¢ relation, one is a prescribed
input quantity, its current value is equal to the instantaneous value; and the other is a response quantity, its
current value involves hereditary effect. For example, if o(¢) is known, then ¢(¢) = ¢°(¢). From Egs. (19a),
(19b) and (17) we see that in this case, D! () = E*(¢) = H(t). Since the response &(z) # °(¢), thus, Di(f) #
H(t), EX(t) # H(t) in Eqgs. (20b) and (20a). Similarly, if &(z) is known, then &(f) = &°(¢). From Eqs. (20a),
(20b) and (17) we see that in this case, Di(t) = E'(¢) = H(¢). Since the response o(f) # ¢°(¢), thus,
Di(t) # H(t), E5(t) # H(¢) in Egs. (19a) and (19b). This fact will be used repeatedly in the next section.

Here, the definition of the creep compliance does not depend on the stress, and the definition of
relaxation modulus does not depend on the strain. These definitions are different from those in linear
viscoelasticity in form, but the meanings are the same. For example, in the case of linear viscoelasticity, if
the strain &(z) is known, substituting ¢°(¢) = E,&°(¢t) = E,&(¢) into Eq. (19b), we find

a(t) = /1 [E;(t — 1) /E,]d[Ese(T)] = /l E,(t — 1) de(n). (21)

o0 o0

Eq. (21) is the usual constitutive relation in linear viscoelasticity.
2.2. Simplified nonlinear viscoelastic constitutive relations

For a class of nonlinear viscoelastic materials that obey the assumptions (5) and (10), the constitutive
relations can be established as follows. We first find the recovered elastic stress and strain from Egs. (19a)
and (20a), and then relate the current stress and current strain in the nonlinear viscoelastic body by using
the nonlinear elastic stress—strain relation (1) or (2).

If the strain ¢(¢) is known, then ¢(¢r) = ¢°(¢), which corresponds to E'(t) = Di(t) = H(t), from Egs. (19a),
(19b) and (1), we find (see Fig. 1)

OW/0e = Dt xda or o(t) = (0W /0e) x dEL. (22a)
In the special case of linear viscoelasticity, o°(¢) = E,&°(¢) = E,&(t), Eq. (22a) can be reduced to:
a(t) =exdE,. (22b)

Similarly, if the stress o(¢) is known, then o(¢) = ¢°(¢), which corresponds to D% (¢) = E'(¢t) = H(¢), from
Egs. (20a), (20b) and (2), we find (see Fig. 2)

OW, /00 = E xde or &(t) = (0W,/00) * dD.. (23a)

e=¢&, or e=D *ds®, D',=H() R
e e 4 I &t) is known I

. | £=¢ or £=F.+de E, =H() |
i D, *do=0W/ds

alf)

Elastic constitutive relation Viscoelastic constitutive relation

Fig. 1. If the strain ¢ is known, the viscoelastic constitutive relation can be established by Egs. (19a), (19b), (20a) and (20b) and the
elastic constitutive relation (1).
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. ! o= or o= E,+dd, E, =H(f) L--»
i S o(t) is known

S S | =0 or =D xdo D, =H() |
i & =0W, /00" | E,xde= oW, /00
o £=E,rde |

I () I fmmm e . &(t)

fomimimm | - e=D *de R

Elastic constitutive relation Viscoelastic constitutive relation

Fig. 2. If the stress ¢ is known, the viscoelastic constitutive relation can be established by Egs. (19a), (19b), (20a) and (20b) and the
elastic constitutive relation (2).

In the special case of linear viscoelasticity, &°(¢) = D,0°(¢) = D.o(¢), Eq. (23a) can be reduced to:
¢(t) = o+ dD,. (23b)

It is seen that Eq. (22b) (or (23b)) is the same as the constitutive equation of the relaxation type (or creep
type) in linear viscoelasticity.

3. Elasticity recovery correspondence principles

Utilizing the similarity of the constitutive relations between the elastic body and the viscoelastic body,
two kinds of approaches for deducing the correspondence principle in linear viscoelasticity have been
developed: the integral transform method and the Volterra’s principle. It is rather difficult to generalize
them to the case of nonlinear viscoelastic problems. Thus, an entirely different approach will be employed.
Not the similarity between constitutive relations will be utilized, but the recoverability from the nonlinear
viscoelastic current stress (or strain) to the instantaneous elastic stress (or strain), Egs. (19a) and (20a), will
be utilized. The current stress, strain and displacement obey the laws of nonlinear viscoelasticity, whereas
the recovered instantaneous elastic stress, strain and displacement obey the laws of nonlinear elasticity. We
will now establish the corresponding relations between the solutions of the nonlinear viscoelastic problem
and the nonlinear elastic problem. The following correspondence principles are equally applicable to the
special case of linear viscoelastic problems. Their validity can also be verified by the known linear visco-
elastic solutions.

3.1. Governing equations for nonlinear elastic problem in one-dimensional case

Consider a one-dimensional body with surface boundary S = Sy U Sy at the two ends (Fig. 3). Let the
body force per unit volume in the x-direction be prescribed by F* in the body, and let the displacement be
prescribed over Sy by U° and the traction be prescribed over Sy by 7°. Then governing equations for the
quasi-static, isotropic, nonlinear elastic problem in one-dimensional case are as follows:

Equilibrium equation (8¢°/0x) + F°* =0, (24)
Geometrical equation &® = 0u®/0x, (25)
Constitutive equation & = 0W,/0c° (26)
or o¢°=0W/0¢, (27)
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—

Fig. 3. One-dimensional body.

.. . o =T°, on Sr,
Boundary conditions of the first kind { W= U =0, on Sy, (28)
Boundary condition of the second kind u®=U®, on Sy =S. (29)

3.2. Governing equations for nonlinear viscoelastic problem in one-dimensional case

Assume that the geometry and the boundary conditions are the same as those for the corresponding
nonlinear elastic body: the body force per unit volume in the x-direction is prescribed by F = F° in the
body; and T(¢) = T°(¢) (or U = U®) is prescribed over the boundary. Then the governing equations for
quasi-static, isotropic, nonlinear viscoelastic problem in one-dimensional case are as follows:

Equilibrium equation (90/0x) + F =0, (30)
Geometrical equation & = Ou/0x, (31)
Constitutive equation ¢(f) = (0W;/9¢) * dD; (32)
or o(t) = (0W/0¢) x dE:. (33)
Boundary conditions of the first kind { Z : U7: 0, 22 gz: (34)
Boundary condition of the second kind u=U, on Sy =S. (35)

If the body is originally undisturbed, the initial conditions take the form
o(t) =¢(t) =u(t) =0, for —oo<t<O.

3.3. Elasticity recovery correspondence principles

Using Egs. (20a), (20b), (25) and (31) and the interchangeability of the differentiation with respect to the
spatial variable x and the hereditary integration with respect to the variable ¢, it is easy to obtain the re-
lations between the current displacement and the recovered elastic displacement:

u®(t) = Ex(¢) « du(z), u(t) = Di(t) = du®(¢). (36)
Similarly, from Egs. (19a), (19b), first terms of Eqgs. (28), (34) and (36), (29), (35) we have, respectively,
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Te(f) = D\ «dT, T(r) = E. «dT*. (37)

US(t) = '+ dU, U(t) = Df = dU". (38)

We are now ready to give the elasticity recovery correspondence principles (ERCPs).

ERCP-1: If the body is originally undisturbed, the body force per unit volume is prescribed by F in the
body and the boundary conditions of the first kind are prescribed over the surface, then the solution of the
nonlinear viscoelastic problem (i.e., Egs. (30)—(32) and (34)) is as follows:

a(t) =0%(t), e&(t) =D xde?, u(t)=D;x*du, (39)

where the Stieltjes convolution is defined by Eq. (14), and ¢°, ¢°, u° satisfy equations of the corresponding
nonlinear elastic problem (i.e., Egs. (24)—(26) and (28)) together with the same boundary conditions: F¢ = F
in the body, T° = T over Sy and U® = U = 0 over Sy.

Proof: Since the body force and surface force are prescribed for this kind of problems, they are the
instantaneous values: F = F®; T = T*, it follows from Eqs. (37) and (17) that D (¢) = E.(t) = H(t). Sub-
stituting them into Egs. (19a) and (19b) and using Eq. (17), we obtain the first term of Eq. (39). In this case,
the stress in nonlinear viscoelastic body coincides with the stress in the corresponding nonlinear elastic
body. Since the prescribed surface displacement U® = U = 0, then Eq. (38) has no restriction on D'(¢) and
Ei(1).

That Eq. (39) is indeed the solution is easily proved by substituting it into the corresponding equations.
Substituting ¢ = ¢° into Egs. (30), (32) and the first term of Eq. (34), using Eq. (20b), and noting that
F =F¢, T =T¢, we obtain the same equations as Egs. (24), (26) and the first term of Eq. (28), which are
satisfied naturally. Substituting the last two terms of Eq. (39) into Eq. (31) and the second term of Eq. (34),
and noting that U = U¢, we obtain

D; xde® = 0(D; * du®) /ox = D, » d(0u°/0x), D:=*du®=0.

Here we have used the interchangeability of the differentiation with respect to the spatial variable and the
hereditary integration with respect to time. Due to Eq. (25) and the second term of Eq. (28), the above
equations are also satisfied. By the definition (14), the initial condition is automatically satisfied. Therefore,
Eq. (39) is indeed the solution of the nonlinear viscoelastic problem.

ERCP-2: 1If the body is originally undisturbed, there are no body forces (F = 0) in the body and
boundary condition of the second kind is prescribed over the surface, then the solution of the nonlinear
viscoelastic problem (i.e., Egs. (30), (31), (33) and (35)) is as follows:

u(t) =u’(t), () =¢(t), o(t)=E, xde¢, (40)

where the Stieltjes convolution is defined by Eq. (14), and ¢°, ¢°, u® satisfy the equations of the corre-
sponding nonlinear elastic problem (i.e., Egs. (24), (25), (27) and (29)) together with the same boundary
conditions: F¢ = F = 0 in the body, and U° = U, on the boundary.

Proof: Since the displacement is prescribed for this kind of problems, it is the instantaneous value:
U = U, it follows from Egs. (38) and (17) that E7(¢) = Di(¢) = H(t). Substituting them into Egs. (36), (20a)
and (20b) and using Eq. (17), we obtain the first two terms of Eq. (40). In this case, the displacement and
strain in nonlinear viscoelastic body coincide with the displacement and strain in the corresponding non-
linear elastic body.

That Eq. (40) is indeed the solution is easily proved by substituting it into the corresponding equations.
Substituting the first two terms of Eq. (40) into Eqs. (31) and (35) and noting that U; = U;, we obtain the
same equations as Egs. (25), and (29), which are satisfied naturally. Substituting the last term of Eq. (40)
into Egs. (30) and (33), noting that F = F° = 0, and using the second term of Eq. (40), we obtain
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O(E; «dg®)/ox = EL +d(0¢°/0x) =0,
El «de® = o« dE} = (OW/0¢°) x dE.

Due to Egs. (24) and (27), the above equations are also satisfied. The initial condition is automatically
satisfied as before. Therefore, Eq. (40) is indeed the solution of the nonlinear viscoelastic problem.

4. Comparison between theory and experiments

To verify the above theory, the experiment of quasi-static equal-amplitude strain history in uniaxial
stress state has been done, which was performed on specimens of modified polypropylene. The specimen
size was 250 x 50 x 3.8 mm?®, with cross-section area 4 = 192.66 mm? and gauge length 50 mm. A nine
cyclic equal-amplitude-strain loading and unloading test was performed on a material test machine
INSTRON with strain rate of £0.00127 s~! and strain amplitude of 0.029. Experimental data were inputted
to a computer. The stress was calculated by dividing the force by initial area and the corresponding strain
was calculated by dividing the relative displacement between the two ends of the gauge length by the initial
gauge length. Experimental results, including the time ¢, the prescribed strain &(¢) and the current stress o(¢),
were processed by Origin software and numerical calculations were performed by MathCAD software. The
prescribed et curve is shown as the solid line in Fig. 4. The experimental points of the o—¢ relation and the
o—¢ relation are shown as ‘¢»’ in Figs. 5 and 6, respectively.

As there are no stresses acting on all sections that parallel to x-axis in the one-dimensional case, the
solution of the problem under consideration is the same as the corresponding one-dimensional solution. In
the problem under consideration, the body force is zero and the displacement u is prescribed over the two
ends of the specimen. According to the ERCP-2, the solution of the problem is determined by Eq. (40)

¢(t) =€(t), o(t) =E xdg® = ¢° x dET.
Substituting the instantaneous stress—strain relation (8) o° = ¢[e(#)], which will be found in the following,
into the last term of Eq. (40), we can predict the current stress as follows:
t
o(t) = o° x dE, = o[e(1)] = dEL (1) = [e(1)] + / ole(r — 7)) * dEL (7). (41)

0+

We may use the following analytic expressions, which can fit the experimental data very well, for the
relative creep compliance D! and the relative relaxation modulus £ (Zhang, 1999):

© o
o o
M @

o
o
=

Strain ¢ ()

o
o
S

100 200 300 400
Time £ (sec)

o

Fig. 4. Prescribed uniaxial equal-amplitude-strain loading and unloading curve.
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20 o Experiment
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% 15] | Theory (Eq 41)
<= 14 O D G
% 1047 )
8 5f
(7]
3 -5 : : : -
0 100 200 300 400
Time t (sec)
Fig. 5. Current stress—time curve.
15,

2

o Experiment
—— Theory (Eq 41)

Current stress o(f) (MPa)
a1

: T T 1
0.00 0.01 0.02 0.03
Straing(t)

Fig. 6. Current stress—strain curve.

Di(1) = Dy(t)/Dy = 1+ [(Done /Ds) — 1][1 — exp(—=B[(1 + )] )], (42)

Ey(1) = E(1)/E; = 1 = [1 = (Egne/E)[1 = exp(—=B[(1 + 2)1] )], (43)

where the parameters o, 5, f; (0 <a <1, §>0, , > 0), instantaneous compliance D,, long-time com-
pliance D,.,, instantaneous modulus E, and long-time modulus F,, are determined by experiments.
Usually, the instantaneous elastic stress—strain relation ¢° = ¢(¢) in Eq. (41) can be obtained from the
isochronous curve at ¢ = 0, which is determined from a series of creep curves (or relaxation curves) under
different stresses (or strains) (Rabotnov, 1980; Sun, 1999). Here a simplified method for finding ¢ = ¢(¢)
will be employed as follows. Substituting the experimental data of the current stress o(¢) into Eq. (6), we
may calculate the recovered elastic stress o°(¢). If the property of the material satisfies the assumption (5)
strictly, the experimental points of the recovered elastic stress—strain relation ¢°—¢ in the nine loading—
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unloading cycles must fall in a single curve. In other words, Eq. (6) will shift all the experimental points ‘>’
in Fig. 6 upward into a single curve, which is the same as the instantaneous elastic stress—strain curve that
we want to find. However, for real materials, because of the approximation of the Eq. (6), usually, these
recovered elastic stress—strain points (‘¢>’ in Fig. 7) can only approximately fall in the instantaneous elastic
stress—strain curve. Now we may adjust the values of o, f8, D, /D, in Eq. (42) to fit the points (‘{>’ in Fig. 7)
in nine loading—unloading cycles into a single curve as close as possible, and then use the intermediate
values of the recovered elastic stress—strain points as the instantaneous stress—strain relation. We use the
following analytic expression for the instantaneous elastic stress—strain curve to fit these points:

0° = p(2) = ke{1 — c[1 — exp(=b[(1 +a)e ™))}, (44)

where k£ = 4300 MPa, a = 0.63, b = 8.8, ¢ = 0.88. The instantaneous elastic stress—strain curve calculated
by Eq. (44) is shown by the solid lines in Figs. 7 and 8. Finally, we adjust the value of f3, to satisfy Eq. (18).
The parameters thus determined are: o = 0.67, f = 0.199 s*°!, B, = 0.35 s*°!, E,../JE, = Dy/D,s = 0.44.

With the instantaneous elastic stress—strain relation ¢°(¢) = ¢[¢(¢)] and the necessary material kernel
functions E* (¢) and D~ (¢), the current stress ¢(¢) can be predicted by substituting Eq. (44) into Eq. (41). The
theoretical current stress—time curve is shown by the solid line in Fig. 5, and the theoretical current stress—
strain curve is shown by the solid line in Fig. 6. The agreement between the experiment (‘> in Figs. 5 and 6)
and the theory (solid line in Figs. 5 and 6) is considerably good in all the nine cycles. This shows the
practicability of the constitutive relations of the single integral form, (32) and (33), and the validity of the
elasticity recovery correspondence principles in one-dimensional case.

Recovered elastic stress is determined by Eq. (6)

o°(t) = D} xdo = D' (t)a(0) + /oj Di(t—1)do(1). (45)

Substituting the theoretical values of the current stress (41) into Eq. (45), we obtain the recovered elastic
stress:

0°(t) = D, xdo = D! x d[op(e) * dE] = @[e(?)]. (46)
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Fig. 7. Instantaneous stress—strain curve.
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Fig. 8. Recovered elastic stress—strain curve.

Eq. (46) shows that the recovered stress—strain curve coincides with the instantaneous elastic curve
exactly. Recovered elastic stress—strain relation calculated from the theoretical values of o(¢) in the nine
cycles by Eq. (45) is shown by the symbols ‘4’ in Fig. 8. It is shown from this figure that the nine loading
and unloading curves coincide with the instantaneous elastic stress—strain curve (the solid line in Fig. 8),
and the recovered elastic stress and strain return to the origin simultaneously, which satisfies the re-
quirements of elastic behavior completely. This shows the validity of the correspondence between the
nonlinear elastic and nonlinear viscoelastic constitutive relations. A small difference in the numerical results
between the recovered stress—strain curve and the instantaneous stress—strain curve is due to that Egs. (42)
and (43) can only approximately satisfy Eq. (18) when we adjust the parameter f; by means of the nu-
merical technique, and the maximum error is about 3%.

It is interesting to make a simple comparison between the work of Rabotnov, Schapery and ours. Apart
from the slight difference of the notations, the left-hand side of Eq. (8) was called modified stress by
Rabotnov and pseudostress by Schapery. The main difference between the work of Rabotnov, Schapery
and ours is as follows. In our work, the prescribed values for the corresponding instantaneous elastic
problem are the same as those for the viscoelastic problem: F¢ = F, T° =T, U° = U. What we have es-
tablished is the correspondence between the solutions of the nonlinear viscoelastic body and the nonlinear
instantaneous elastic body. Whereas in the work of Rabotnov and Schapery, the prescribed values for the
corresponding pseudo- (or modified) problem are calculated from those for the viscoelastic problem by
taking hereditary integrals: FR = Ex| (D) x dF), TR = Eg;(D; *dT), UR = Ex'(E « dU), where FR, TR, UR
and ER are the prescribed body force per unit volume, the prescribed traction, the prescribed displacement
and the modulus in the reference (or pseudo) elastic problem, respectively. The subscript 1 is used to the
indicate that quantities Er; and ER (as well as the creep compliances D; and D) are not necessarily the same.
What Schapery had established was the correspondence relation between the solutions of the nonlinear
viscoelastic body and the nonlinear pseudobody. However, pseudostrain R and pseudostress o® are not in
general the physical variables and the pseudobody is only an elastic-like body as will be seen later.

Now we use Schapery’s correspondence principle to predict the current stress when the experimental
strain history is prescribed for a comparison. According to the CP-1 (Schapery, 1984), the solution of the
above problem is
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o(t) = Eg| (E; *da®), u = Ex(Dx*du®), (47)

where oR and uR satisfy the equations of the pseudoelastic problem, together with the boundary condition
uf = UR = E3'(E + dU) at the two ends. The solution of the pseudoelastic problem is

eR(1) = Ex! /OtE(t — 1) de(7). (48)

When the strain is prescribed, Schapery used the current stress—pseudostrain relation o(¢)—®(¢) to define
the pseudoelastic constitutive relation (Schapery, 1982). It follows that ¢(7) = o®(¢), or Ex1E(t) = H(¢). To
predict the current stress, we must find the pseudoelastic constitutive relation ¢® = 0 /0¢R and the ma-
terial kernels Ex'E(7) at first. To this end, we use the same expression (43) for the analytic expression of
ER'E(t). Substituting the strain history &(¢) into Eq. (48) and using the experimental data o(¢), we may
obtain the experimental points in the o(¢)—®(¢) plot (‘¢ in Fig. 9). These points are obtained by Eq. (48),
which shifts all the experimental points in the o(¢)—¢(¢) plot (see Fig. 10) leftward. We now adjust the
parameters o, 5, ff;, Er~/Er to fit the points (‘¢>’ in Fig. 9) in nine loading—unloading cycles into a single
curve as close as possible. The parameters thus determined are: o = 0.76, = 0.109s*!, B, = 0.25*!,
Eyoo/E; = D,/Dyo. = 0.445. Then, we use the intermediate values for the o®(¢)—¢®(¢) relation and use the
following analytic expression to fit these values:

R (1) = 900| R | H (eR) — 3000[¢R| " H(eR) — 900|eR ™7 H(—eR). (49)

The pseudostress—pseudostrain curve calculated by Eq. (49) is shown by the solid line in Fig. 9. As we can
see from Fig. 9 that in the nine loading and unloading cycles, when ¢(¢) returns to zero, the values of o®(7)
and &®(¢) do not return to zero, but have negative values. Such behavior of the pseudobody was called
elastic-like behavior by Schapery. Substituting the values of Eq. (49) into the first term of Eq. (47), we
obtain the theoretical current stress. If ExlEi(¢) = H(t), then o(f) = o®(¢). The theoretical stress—strain
curve, o(#)—¢(¢), is shown by the solid line in Fig. 10, and the experimental data is shown by the symbols ‘{’.

15, > Experiment
Equation(49) , _#¢

Stress o(f) (MPa)
& =

@

0.00 0.01 0.02

Pseudo strain £({)

Fig. 9. Stress—pseudostrain curve.
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Fig. 10. Current stress—strain curve.

The accuracy of the theory in Fig. 10 (Schapery’s method) is much less then that in Fig. 6 (our method).
Moreover, in Schapery’s CP-1 (Schapery, 1984), it is not clear how to determine the material kernels in
different boundary conditions. If Ex|E;(¢) = Ex'E(t) # H(t), then o(t) # 6% (7). Using the same method as
above, we find that the o®(£)-e®(¢) curve cannot pass through the origin.

5. Concluding remarks

Nonlinear viscoelastic constitutive relation in the form of simplified single integral is adopted in this
paper. Based on this simplified single integral, relations between current stress (or strain) and recovered
elastic stress (or strain) are given and two elasticity recovery correspondence principles for solving the
nonlinear viscoelastic problems in one-dimensional case are proposed. From the comparison between the
theory and the experiment for modified polypropylene, the practicability of the constitutive relations (32)
and (33) and the validity of the elasticity recovery correspondence principles are verified for such a class
of materials in one-dimensional case. The validity of elasticity recovery correspondence principles can also
be proved by the special case of the known linear viscoelastic solutions. In principle, the above theory can
be applied whenever the assumptions (5) and (10) are satisfied, or whenever the effects of the strains (or
stresses) at different past time upon the present stress (or strain) have negligible interference with each
other. At the first glance, these assumptions seem very special; nevertheless for some polymers, some
aluminum alloys, some alloy steels at high temperature and some soft soils, the practicability of the sim-
plified single integral constitutive relation based upon these assumptions was verified by experiments
(Rabotnov, 1980; Sun, 1999).
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